The Abel map for surface singularities III: Elliptic germs

نویسندگان

چکیده

Abstract The present note is part of a series articles targeting the theory Abel maps associated with complex normal surface singularities rational homology sphere links (Nagy and Némethi in Math Annal 375(3):1427–1487, 2019; Nagy Adv 371:20, 2020; Pure Appl Q 16(4):1123–1146, 2020). Besides general theory, by study specific families we wish to show power this new method. Indeed, using applied for elliptic are able prove several key properties (e.g. statements next paragraph), which ‘old’ techniques were not reachable. If $$({\widetilde{X}},E)\rightarrow (X,o)$$ ( X ~ , E ) → o resolution singularity $$c_1:{\mathrm{Pic}}({\widetilde{X}})\rightarrow H^2({\widetilde{X}},{\mathbb {Z}})$$ c 1 : Pic H 2 Z Chern class map, then $${\mathrm{Pic}}^{l'}({\widetilde{X}}):= c_1^{-1}(l')$$ l ′ = - has (Brill–Noether type) stratification $$W_{l', k}:= \{{\mathcal {L}}\in {\mathrm{Pic}}^{l'}({\widetilde{X}})\,:\, h^1({\mathcal {L}})=k\}$$ W k { L ∈ h } . In determine it together according cycle fixed components. E.g., that closure any $$W(l',k)$$ an affine subspace. For also characterize End Curve Condition Weak terms provide characterization them, finally they equivalent.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing the Abel map

A Riemann surface is associated with its Jacobian through the Abel map. Using a plane algebraic curve representation of the Riemann surface, we provide an algorithm for the numerical computation of the Abel map. Since our plane algebraic curves are of arbitrary degree and may have arbitrary singularities, the Abel map of any connected compact Riemann surface may be obtained in this way.

متن کامل

The Morphic Abel-jacobi Map

The morphic Abel-Jacobi map is the analogue of the classical Abel-Jacobi map one obtains by using Lawson and morphic (co)homology in place of the usual singular (co)homology. It thus gives a map from the group of r-cycles on a complex variety that are algebraically equivalent to zero to a certain “Jacobian” built from the Lawson homology groups viewed as inductive limits of mixed Hodge structur...

متن کامل

On pairs of regular foliations in R and singularities of map-germs

We study germs of pairs of codimension one regular foliations in R. We show that the discriminant of the pair determines the topological type of the pair. We also consider various classifications of the singularities of the discriminant.

متن کامل

Crack singularities for general elliptic systems

We consider general homogeneous Agmon-Douglis-Nirenberg elliptic systems with constant coefficients complemented by the same set of boundary conditions on both sides of a crack in a two-dimensional domain. We prove that the singular functions expressed in polar coordinates (r; ) near the crack tip all have the form r 12+k'( ) with k 0 integer, with the possible exception of a finite number of s...

متن کامل

A Fatou Type Theorem for Complex Map Germs

In this paper we prove a Fatou type theorem for complex map germs. More precisely, we give (generic) conditions assuring the existence of parabolic curves for complex map germs tangent to the identity, in terms of existence of suitable formal separatrices. Such a map cannot have finite orbits.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Zeitschrift

سال: 2021

ISSN: ['1432-1823', '0025-5874']

DOI: https://doi.org/10.1007/s00209-021-02830-7